Distributed modelling of shallow landslides triggered by intense rainfall
نویسندگان
چکیده
Hazard assessment of shallow landslides represents an important aspect of land management in mountainous areas. Among all the methods proposed in the literature, physically based methods are the only ones that explicitly includes the dynamic factors that control landslide triggering (rainfall pattern, land-use). For this reason, they allow forecasting both the temporal and the spatial distribution of shallow landslides. Physically based methods for shallow landslides are based on the coupling of the infinite slope stability analysis with hydrological models. Three different gridbased distributed hydrological models are presented in this paper: a steady state model, a transient “piston-flow” wetting front model, and a transient diffusive model. A comparative test of these models was performed to simulate landslide occurred during a rainfall event (27–28 June 1997) that triggered hundreds of shallow landslides within Lecco province (central Southern Alps, Italy). In order to test the potential for a completely distributed model for rainfall-triggered landslides, radar detected rainfall intensity has been used. A new procedure for quantitative evaluation of distributed model performance is presented and used in this paper. The diffusive model results in the best model for the simulation of shallow landslide triggering after a rainfall event like the one that we have analysed. Finally, radar data available for the June 1997 event permitted greatly improving the simulation. In particular, radar data allowed to explain the non-uniform distribution of landslides within the study area.
منابع مشابه
Colluvium supply in humid regions limits the frequency of storm-triggered landslides
Shallow landslides, triggered by extreme rainfall, are a significant hazard in mountainous landscapes. The hazard posed by shallow landslides depends on the availability and strength of colluvial material in landslide source areas and the frequency and intensity of extreme rainfall events. Here we investigate how the time taken to accumulate colluvium affects landslide triggering rate in the So...
متن کاملTopographical factor-based shallow landslide hazard assessment: a case of Dayi area of Guizhou Province in China
Background: Three groups of factors related to topography, geology and hydrology have influence on the triggering of shallow landslides in soil material. In this paper a single representative factor (T-factor) for the topography is proposed, which can be used to define threshold values for the possibility of shallow soil slides. This study was carried out in the Dayi area, Guizhou Province, Chi...
متن کاملRainfall-triggered landslides in the Lisbon region over 2006 and relationships with the North Atlantic Oscillation
Landslides occurred in the Lisbon area during the last 50 years were almost always induced by rainfall and have been used to establish rainfall thresholds for regional landslide activity. In 2006, three new rainfall-triggered landslide events occurred in the study area, namely on the 20 March, the 25–27 October, and the 28 November. Landslide events occurred in March and October 2006 include sh...
متن کاملRelationship between rainfall and shallow landslides in the southern Apuan Alps (Italy)
The Apuan Alps region is one of the rainiest areas in Italy (more than 3000 mm/year), in which frequently heavy and concentrated rainfall occurs. This is particularly due to its geographical position and conformation: the Apuan chain is located along the northern Tuscan coast, close to the Ligurian Sea, and the main peaks reach almost 2000 m. In several cases, the storms that hit the area have ...
متن کاملEvaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment
[1] Intense storms with high-intensity, long-duration rainfall have great potential to trigger rapidly moving landslides, resulting in casualties and property damage across the world. In recent years, through the availability of remotely sensed datasets, it has become possible to conduct global-scale landslide hazard assessment. This paper evaluates the potential of the real-time NASA TRMMbased...
متن کامل